Riemann Hypothesis and Short Distance Fermionic Green’s Functions

نویسنده

  • Michael McGuigan
چکیده

We show that the Green’s function of a two dimensional fermion with a modified dispersion relation and short distance parameter a is given by the Lerch zeta function. The Green’s function is defined on a cylinder of radius R and we show that the condition R = a yields the Riemann zeta function as a quantum transition amplitude for the fermion. We formulate the Riemann hypothesis physically as a nonzero condition on the transition amplitude between two special states associated with the point of origin and a point half way around the cylinder each of which are fixed points of a Z2 transformation. By studying partial sums we show that that the transition amplitude formulation is analogous to neutrino mixing in a low dimensional context. We also derive the thermal partition function of the fermionic theory and the thermal divergence at temperature 1/a. In an alternative harmonic oscillator formalism we discuss the relation to the fermionic description of two dimensional string theory and matrix models. Finally we derive various representations of the Green’s function using energy momentum integrals, point particle path integrals, and string propagators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Theory of Zeta-functions and L-functions

In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet’s L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we ...

متن کامل

Operator improvement for Ginsparg - Wilson fermions

The improvement of fermionic operators for Ginsparg-Wilson fermions is investigated. We present explicit formulae for improved Green’s functions, which apply both on-shell and off-shell.

متن کامل

Green’s Functions, Electric Networks, and the Geometry of Hyperbolic Riemann Surfaces

We compare Green’s function g on an infinite volume, hyperbolic Riemann surface X with an analogous discrete function gdisc on a graphical caricature Γ of X. The main result, modulo technical hypotheses, is that g and gdisc differ by at most an additive constant C which depends only on the Euler characteristic of X. In particular, the estimate of g by gdisc remains uniform as the geometry (i.e....

متن کامل

Interpolation and Sampling for Generalized Bergman Spaces on Finite Riemann Surfaces

The goal of this paper is to establish sufficient conditions for a uniformly separated set on a finite Riemann surface to be interpolating or sampling for a generalized Bergman space of holomorphic functions on that surface. Let us fix an open Riemann surface X. Much of the geometry used in the statements and proofs of our results arises from potential theory on X. If X is hyperbolic, then X ad...

متن کامل

Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005